

Genetics Basic concepts

Laurence Faivre, MD-PhD, ITHACA HCP Dijon, France

Network
Intellectual Disability
and Congenital
Malformations (FIO) ITHAC

EURORDIS Winter School on Scientific Innovation and Translational Research, online

Chromosomes/genes

2 main types of variations/genetic testing

Chromosomal analysis by Array-CGH, first intention test

Gene sequencing

Find an error in the number of chromosomes

Find loss or gain of a small number of genes

Find a small mutation in a gene

Array CGH

The genes and « non-coding » regions

non coding DNA (98.5 %)

Panels, exome, genome

The genetic variations

- Can be of all types (change in a letter, loss, duplication, inversion ...)
- Can be of all size (from one letter to a chromosome)
- Can have different implications
 - No effet (neutral)
 - Positive
 - Responsable of a disease
 - Susceptibility factors

cgcgtatcagagagatcctc gctagagctctcgcgagctc gctgagggcgccctctctag aaaagagagctccgctagag agatctcgctgatcgatgct agctagtcgatcgatcgatc gatcgatccccgggcggc cgcggggggagaaagctct ctataattatctcgctaata

- Between 2 persons : about 1 difference every 1 000 letters
- At the genome scale
 - 3 to 4 millions of small variations
 - > 1 000 structural variations

Evolution of techniques

Human Genome Project 13 years

13 years > 3 billions \$

James Watson's genome

2 months 2 millions \$

Individual genome

15 days 3000-5000 \$

Individual genome

3 days 1000 \$

Individual genome

1 hour 100 \$

2003

2007

2013

2015

2025

A mandatory bio-informatic analysis

Exome/genome sequencing

- Unique analysis of all genes in the genome
- Indicated in first intention in very heterogeneous disorders
- Positive diagnosis in 40-50% in developmental disorders, in the absence of a clinical diagnostic
- Uncertain diagnosis in 15% of cases, to be shared with international initiatives (genematcher)
- Possibility of reanalysing the data with scientific advances in negative cases
- Cost relatively low (<1000 euros)
- Quick turnover (3-6 months)

Interpretation of results

- 5 classes: Pathogenic, probably pathogenic, variant of unknown significance, probaly neutral, neutral
- Only pathogenic and probably pathogenic variant give access to presymptomatic testing or prenatal diagnosis
- To be able to conclude:
 - O Parental samples for segregation analyses +++, but a de novo occurrence cannot be enough (every individual have a mean of 1.5 de novo variant)
 - Databases, litterature, bioinformatic analyses
 - Sharing
- The time for variant interpretation can greatly vary
- Loss of chance when the lab does not have access to a research team for studying non OMIM variants

Towards faster processes

MEDICINE

The Ultimate Genetic Test

Towards Omics

Questions

